量子计算百刻昼夜长度,量子计算带来的全新挑战有哪些?

用户投稿 220 0

关于量子计算百刻昼夜的问题,小编就整理了3个相关介绍量子计算百刻昼夜的解答,让我们一起看看吧。

量子计算带来的全新挑战有哪些?

第一个挑战在于如何提升量子位的质量和并测试时间。

“扩展量子的挑战在于如何批量生产高质量量子位。小型量子计算系统中所使用的量子位,其质量对于商用级量子系统来说是远远不够的。业内需要寿命足够长、相互之间连接性足够强的量子位,以便扩展至包含数百万量子位的商用级量子计算机,能够在实际的应用领域执行有效的量子程序或量子算法。”Anne表示,目前英特尔正在尝试使用量子低温探测仪(cryoprober),帮助在工厂的 CMOS 晶圆上快速测试量子位。

第二个挑战是量子位控制。当前,量子位主要由许多机架(rack)的控制电路进行控制,这些电路通过复杂的布线连接至量子位,并且被放置在低温冰箱中,以防止热噪声和电噪声影响脆弱的量子位。对于商用级量子计算系统,需要将数百万根导线引入量子位室(qubit chamber)。

为此,英特尔推出了第二代低温控制芯片Horse Ridge II,以突破量子计算在可扩展性方面的瓶颈,该芯片拥有可以操纵和读取量子位状态的能力。

英特尔研究院组件研究事业部量子硬件总监Jim Clarke表示:“仅仅增加量子位的数量而不解决由此产生的布线复杂性,这就好比拥有一辆跑车,但总是堵在车流中,英特尔采用支持可扩展互连的低温量子位控制芯片技术能够提高保真度,降低功率输出,朝着‘无堵车’的集成量子电路发展再向前迈进一步。”

量子计算原理通俗解释?

量子计算是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。

量子叠加态

在理解量子计算的概念时,通常把它和经典计算机相比较。

经典计算使用二进制的数字电子方式进行运算,而二进制总是处于0和1的确定状态。量子计算和现有的计算模式完全不同,它借助量子力学的叠加特征,能够实现计算状态的叠加,它不仅包含0和1,还包含0和1同时存在的叠加态(superposition)。

从可计算的问题来看,量子计算机只能解决传统计算机所能解决的问题,但是从计算的效率上,由于量子力学叠加性的存在,某些已知的量子算法在处理问题时速度要快于传统的通用计算机。

量子计算机到底有多可怕?

一台300量子比特的计算机就可以容纳人类有文明以来到现在的所有东西,而且在量子领域有多东目前已经超出了人类的认知范围,你就说这玩意儿厉不厉害吧?所以爱因斯坦那句话形容的非常贴切,说这玩意老厉害了啊!

作为计算机的未来,量子计算机拥有强大的计算能力。对于传统计算机需数十亿年才能处理的问题,量子计算机几乎可以瞬间解决。

近日,IBM的一位高管就表示,量子计算机可以即刻破解如今最严密的加密方式。而且由于量子计算领域的迅速进步,这一幕很可能几年内就会到来。

近日在旧金山丘吉尔俱乐部的一个会议上,IBM研究中心主任Arvind Krishna表示,谁想确保数据在超过10年的时间里受到保护,现在就应改用其他形式的加密技术。

斯坦福大学的物理学教授Kam Moler也在会上表示,人们可能会认为自己已经做了万全之策来保护数据,但是量子计算机依然有能力攻破它。

不过这并未意味着末日到来。Krishna也提出,有一种名为Lattice Field的算法,可以防御量子计算的攻击。他还表示,并非所有应用都能从量子计算中获益。他说:“我们仍然不知道哪些应用最适合在量子计算机上运行。我们需要许多新算法。”

他确信,由于相关技术的进步,量子计算机将在约五年以后进入广泛商用阶段。

到此,以上就是小编对于量子计算百刻昼夜的问题就介绍到这了,希望介绍量子计算百刻昼夜的3点解答对大家有用。

抱歉,评论功能暂时关闭!